Identification of an Lpv Vehicle Model Based on Experimental Data for Brake-steering Control

نویسندگان

  • G. Rödönyi
  • J. Bokor
چکیده

A physically parameterized continuous-time velocity-scheduled LPV state-space model of a heavy-truck is identified from measurement data. The aim is to develop a model for controller which steers the vehicle by braking either the one or the other front wheel. It can be applied in many vehicles, where the sole possibility to automate the steering in emergency situations, like e.g. unintended lane departure, is the application of the electronic brake system. Such steering controllers usually require the prediction of the yaw rate and the steering angle on every possible velocity. This problem defines the requirements for the model. Four different order model structures are derived from a certain physical description. Assuming state and output noise, all of them are identified in parameter-varying observer form using prediction error method. The quadratic criterion function is composed from measurement data of several different experiments. Each experiments are carried out on constant velocities but the cost is constituted from different velocity experiments. That structure is selected for controller design which has the best cost on test data out of those the poles of which are in the control bandwidth. The poles are defined on constant velocity. The resulted nominal model consists of the feedback connection of the yaw dynamics with one state-variable and the steering system dynamics with two states and of a first order actuator dynamics with time-delay. The predicted outputs show a good fit to the measurements. Copyright c 2005 IFAC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of LPV steering models of a truck

In the paper Linear Parameter-Varying (LPV) models of a road-vehicle are presented, that describe the yaw dynamics, the steering system and the brake dynamics of the front wheels. The scheduling parameter is the vehicle velocity. The identification procedure is also detailed. The aim of the identification is to provide models for LPV yaw-rate controller design. The differential brake control on...

متن کامل

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

متن کامل

Vehicle Directional Stability Control Using Bifurcation Analysis of Yaw Rate Equilibrium

In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model with two degrees of freedom has been developed. Using the continuation software package MatCont a stability analysis based on phase plane analysis and bifurcation of equilibrium is perfo...

متن کامل

Set-membership LPV model identification of vehicle lateral dynamics

Set-membership identification of a Linear Parameter Varying (LPV) model describing the vehicle lateral dynamics is addressed in the paper. The model structure, chosen as much as possible on the ground of physical insights into the vehicle lateral behavior, consists of two single-input single-output LPV models relating the steering angle to the yaw rate and to the sideslip angle. A set of experi...

متن کامل

Vehicle Stabilization via a Self-Tuning Optimal Controller

Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005